In more than 15 years of research we always applied quantum chemistry to better understand or predict experimental results. In this research, performed in various outstanding quantum chemistry groups in the world (e.g. in TU Ilmenau, IOCB Prag, Uppsala University, Stanford University), many different research topics with a focus on (metal)organic substances and their properties were addressed:


  • Molecular structures1,2 and their elucidation3

  • Reactivities4,5 and bond properties4-6 , reaction mechanisms7,8

  • Biomimetics9

  • Photochemistry10-14 and photovoltaics15

  • Accurate prediction of thermodynamic properties5

  • Spectroscopic properties:

    • IR-, Raman-1 and resonance Raman spectra14

    • Mass spectra3, NMR characteristics16

    • UV-vis absorption-14,17,18 and emission spectra19


We happily provide the gathered experience in science but also in project management and acquisition of research funds to you!



Selected references

1 Presselt, M. et al. The Influence of Zinc(II) in a bis-Terpyridine-Phenylene Complex on the pi-Conjugation between the Terpyridine and the Phenylene Moiety. Journal of Physical Chemistry C 112, 18651-18660, doi:10.1021/jp807461j (2008).

2 Sachse, T., Martinez, T. J., Dietzek, B. & Presselt, M. A program for automatically predicting supramolecular aggregates and its application to urea and porphin. J. Comput. Chem., doi:10.1002/jcc.25151 (2018).

3 Knop, K. et al. Systematic MALDI-TOF CID Investigation on Different Substituted mPEG 2000. Macromol. Chem. Phys. 211, 677-684, doi:10.1002/macp.200900309 (2010).

4 Presselt, M., Wojdyr, M., Beenken, W. J. D., Kruk, M. & Martinez, T. J. Steric and electronic contributions to the core reactivity of monoprotonated 5-phenylporphyrin: A DFT study. Chem. Phys. Lett. 603, 21-27, doi:10.1016/j.cplett.2014.04.011 (2014).

5 Presselt, M. et al. Quantum Chemical Insights into the Dependence of Porphyrin Basicity on the Meso-Aryl Substituents: Thermodynamics, Buckling, Reaction Sites and Molecular Flexibility. PCCP 17, 14096-14106, doi:10.1039/C5CP01808K (2015).

6 Beenken, W., Maes, W., Kruk, M., Martínez, T. & Presselt, M. Origin of the Individual Basicity of Corrole NH-Tautomers: A Quantum Chemical Study on Molecular Structure and Dynamics, Kinetics, and Thermodynamics. J. Phys. Chem. A 119, 6875-6883, doi:10.1021/acs.jpca.5b02869 (2015).

7 Eger, W. et al. Metal Mediated Reaction Modeled on Nature: The Activation of Isothiocyanates Initiated by Zinc Thiolate Complexes. Inorg. Chem. 50, 3223-3233, doi:10.1021/ic101464j (2011).

8 Lofas, H. et al. A computational study of potential molecular switches that exploit Baird's rule on excited-state aromaticity and antiaromaticity. Faraday Discuss. 174, 105-124, doi:10.1039/c4fd00084f (2014).

9 Jahn, B. O., Eger, W. A. & Anders, E. Allene as the Parent Substrate in Zinc-Mediated Biomimetic Hydration Reactions of Cumulenes. J. Org. Chem. 73, 8265-8278, doi:10.1021/jo801358m (2008).

10 Papadakis, R. et al. Metal-free photochemical silylations and transfer hydrogenations of benzenoid hydrocarbons and graphene. Nature Communications 7, doi:10.1038/ncomms12962 (2016).

11 Jahn, B. O., Ottosson, H., Galperin, M. & Fransson, J. Organic Single Molecular Structures for Light Induced Spin-Pump Devices. Acs Nano 7, 1064-1071, doi:10.1021/nn3038622 (2013).

12 Finke, A. D. et al. The 6,6?Dicyanopentafulvene Core: A Template for the Design of Electron?Acceptor Compounds. Chemistry - A European Journal 21, 8168-8176, doi:10.1002/chem.201500379 (2015).

13 Presselt, M. et al. A Concept to Tailor Electron Delocalization: Applying QTAIM Analysis to Phenyl-Terpyridine Compounds. J. Phys. Chem. A 114, 13163-13174, doi:10.1021/jp107007a (2010).

14 Preiß, J. et al. How Does Peripheral Functionalization of Ruthenium(II)–Terpyridine Complexes Affect Spatial Charge Redistribution after Photoexcitation at the Franck–Condon Point? ChemPhysChem 16, 1395-1404, doi:10.1002/cphc.201500223 (2015).

15 Beenken, W. J. D. et al. Sub-bandgap absorption in organic solar cells: experiment and theory. PCCP 15, 16494-16502, doi:10.1039/c3cp42236d (2013).

16 Presselt, M., Schnedermann, C., Schmitt, M. & Popp, J. Prediction of electron densities, the respective laplacians, and ellipticities in bond-critical points of phenyl-CH-bonds via linear relations to parameters of inherently localized CD stretching vibrations and 1H NMR-shifts. J. Phys. Chem. A 113, 3210-3222, doi:10.1021/jp809601a (2009).

17 Fischer, S. et al. Photometric Detection of Nitric Oxide Using a Dissolved Iron(III) Corrole as a Sensitizer. ChemPlusChem 81, 594-603, doi:10.1002/cplu.201600118 (2016).

18 Preiß, J. et al. Absorption and Fluorescence Features of an Amphiphilic meso-Pyrimidinylcorrole: Experimental Study and Quantum Chemical Calculations. J. Phys. Chem. A 121, 8614-8624, doi:10.1021/acs.jpca.7b08910 (2017).

19 Gampe, D. M. et al. Stable and Easily Accessible Functional Dyes: Dihydrotetraazaanthracenes as Versatile Precursors for Higher Acenes. Chemistry – A European Journal 21, 7571-7581, doi:10.1002/chem.201500230 (2015).

Where to find us

SciClus GmbH & Co. KG
Moritz-von-Rohr-Str. 1a
07745 Jena

Tel +49 3641/27893 0
Fax +49 3641/27893 99

www.sciclus.de